UNLOCKING THE GENETIC POTENTIAL OF BAMBARA GROUNDNUT (VIGNA SUBTERRANEA L.) TO INCREASE LEGUME CROP PRODUCTION IN NIGERIA

Akwapoly Journal of Communication and Scientific Research (APJOCASR)

Authors

  • Gbonhinbor Joan Author
  • Dr. K. Presidor Author
  • Dr. Josephine U. Agbogua Author
  • C. Ologidi Author

DOI:

https://doi.org/10.60787/apjcasr.vol7no1.17

Keywords:

Bambara groundnut, cotyledon, genetic map, ICP-MS, QTL analysis

Abstract

This research aims to improve the growth of a valuable African crop called Bambara groundnut by studying its genetic makeup. The goal is to create a detailed map of its genetic structure and to learn more about how it absorbs crucial nutrients from the soil. Bambara groundnut (BGN) is an African native legume, rich in protein, able to fix nitrogen, highly drought tolerant and with reasonably good disease resistance that bears a rich food, nutritional and cultural history for the poor resource-base farmers in sub-Saharan Africa. By doing this, we hope to find ways to help Bambara groundnuts grow better, even in environments where the soil is not very nutrient-rich. A dense genetic map is constructed in an F2 population derived from two highly divergent parents (S19-3 and Ankpa4) based on SNP and DArT markers. The linkage map consists of 1238 marker loci (859 SNPs and 379 DArTs), with good coverage (1185cM spanning 11 linkage groups; one marker per 1 cM, on average). This genetic map is an invaluable resource for QTL analysis and represents qualitative advances in the genetic improvement of Bambara groundnut. ICP-MS analysis of a subset of the individuals (n=48) shows that Bambara groundnut is rich in phosphorus (P) and other mineral elements and that the S19-3 X Ankpa-4 F2 population developed in this project is segregating for these mineral elements. Therefore, a QTL analysis based on mineral element composition is possible if an ICP-MS analysis can be completed on the entire population (n=270). The results from the cotyledon removal experiment suggest that the cotyledon contributes to the early seedling establishment of Bambara groundnut genotypes in nutrient-poor soils. These findings have implications for the genetic improvement of Bambara groundnut to unlock the genetic potential of this essential African legume.

Author Biographies

  • Gbonhinbor Joan

    Department of Science Laboratory Technology, Federal Polytechnic, Ekowe, Bayelsa State,Nigeria

  • Dr. K. Presidor

    Department of Plant Biotechnology, Niger Delta University, Amassoma, Bayelsa State, Nigeria.

  • Dr. Josephine U. Agbogua

     Department of Plant science and Biotechnology, University of Port Harcourt, Nigeria.

  • C. Ologidi

    Department of Environmental Biology and Genetics,  Niger Delta University, Amassoma, Bayelsa State, Nigeria

     

     

References

Ahmad, N.S., Basu, S.M., Redjeki, E.S., Murchie, E., Massawe, F., Azam-Ali, S., Kilian, A., Mayes, N. (2013). Developing genetic mapping and marker-assisted breeding techniques in Bambara groundnut (VignasubterraneaL.). Acta Horticulturae. 979.437450

Bohra,A.,Pandey,M.K.,Jha,U.C.,Singh,B.,Singh,I.P.,Datta,D.,Chaturvedi,S.K.,Nadarajan, N. & Varshney, R. K. (2014). Genomics-assisted breeding in four major pulse crops ofdeveloping countries: present status and prospects. Theoretical and Applied Genetics 127(6):1263-1291.

Chen, H.D., He, H., Zhou, F.S., Yu, H.H. & Deng, X.W. (2013). Development of genomics-based genotyping plat forms and their applications in rice breeding. Current Opinion in Plant Biology, 16(2):247-254.

Collard B C Y, Jahufer M Z Z, Brouwer J B, Pang E C K. 2005. An introduction to markers, quantitative traitloci (QTL) mapping and marker-assisted selection for crop improvement: the basic concepts. Euphytica 142:169–196

Davey, J. W., Hohenlohe, P. A., Etter, P. D., Boone, J. Q., Catchen, J. M. & Blaxter, M. L. (2011).Genome-wide genetic marker discovery and genotyping using next-generation sequencing.NatureReviewsGenetics12(7):499-510.

Deschamps, S., Llaca, V. & May, G. D. (2012). Genotyping-by-Sequencing in Plants. Biology(Basel)1(3):460-483.

HoWK,ChaiHH,KendabieP,AhmadNS,JaniJ,MassaweF,KilianA,MayesS(2017)Integratinggeneticmapsinbambaragroundnut[Vignasubterranea(L)Verdc.] and their syntenic relationships among closelyrelatedlegumes.BMC Genomics18.

Kendabie, P., Massawe, F., and Mayes, S. (2015). Developing genetic mapping resources fromlandrace-derived genotypes that differ for photoperiod sensitivity in Bambara groundnut (Vigna subterranean L.).Aspects of Applied Biology, (124), 49-55.

Kendabie, P., Jørgensen, S. T., Massawe, F., Fernandez, J., Azam‐Ali, S., & Mayes, S. (2020).Photoperiod control of yield and

sink capacity in Bambara groundnut (Vigna subterranea) genotypes. Food and Energy Security, 9(4), e240.

Kumawat, G., Raje, R. S., Bhutani, S., Pal, J. K., Mithra, A. S. V. C. R., Gaikwad, K., Sharma,T

R. & Singh, N. K. (2012). Molecular mapping of QTLs for plant type and earliness traits inpigeonpea (Cajanuscajan L. Millsp.). BmcGenetics13.

Lucas, M. R., Diop, N. N., Wanamaker, S., Ehlers, J. D., Roberts, P. A. & Close, T. J. (2011).Cowpea-Soybean Synteny Clarified through an Improved Genetic Map. Plant Genome 4(3):218-225.

Muchero, W., Ehlers, J. D., Close, T. J. & Roberts, P. A. (2009). Mapping QTL for drought stress-induced premature senescence and maturity in cowpea [Vigna unguiculata(L.) Walp.]. Theoretical and Applied Genetics118 (5):849-863.

Osuji, J. O. & Edeoga, H. O. (2005). Karyological studies on Vigna subterranea (L.) Verdc. fromNigeria. Cytologia 70(2):167-169.

Ouedraogo, J. T., Gowda, B. S., Jean, M., Close, T. J., Ehlers, J. D., Hall, A. E., Gillaspie, A. G.,Roberts,P.A.,Ismail,A.M.,Bruening,G.,Gepts,P.,Timko,M.P.&Belzile,F.J.(2002).An improved genetic linkage map for cowpea (Vigna unguiculata L.) Combining AFLP, RFLP, RAPD, biochemical markers, and biological resistance traits. Genome45 (1):175-188.

Paterson,A.H.(1996).Making genetic maps. Genome mapping in plants194.

Poland, J.A. & Rife,T.W.(2012). Genotyping-by-Sequencing for Plant Breeding and Genetics. Plant Genome, 5(3):92-102.

Sansaloni, C., Petroli, C., Jaccoud, D., Carling, J., Detering, F., Grattapaglia, D. & Kilian, A.(2011).Diversity Arrays Technology (DArT) and next-generation sequencing combined: genome-wide, high through put, highly informative genotyping for molecular breeding of Eucalyptus. In BMC Proceedings, Vol.5, P54:BioMed Central Ltd.

Saxena, R. K., Saxena, K. B., Kumar, R. V., Hoisington, D. A. & Varshney, R. K. (2010). Simple sequence repeat-based diversity in elite pigeon pea genotypes for developing mapping populations to map resistance to Fusarium wilt and sterility mosaic disease. Plant Breeding129(2):135-141.

Spindel, J., Wright, M., Chen, C., Cobb, J., Gage, J., Harrington, S., Lorieux, M., Ahmadi, N. &McCouch, S. (2013). Bridging the genotyping gap: using genotyping by sequencing (GBS) toadd high-density SNP markers and new value to traditional bi-parental mapping and breeding populations. Theoretical and Applied Genetics, 126(11):2699-2716.

Uguru, M., Agwatu, U. & Faluyi, J. (2006). Cytogenetic studies on Bambara groundnut (Vignasubterranea(L.) Verdc). Measurements 100:1μm.

Van Ooijen, J. (2006). JoinMap 4. Software for the calculation of genetic linkage maps in experimental populations. Kyazma BV, Wageningen, Netherlands.

Varshney, R. K., Glaszmann, J. C., Leung, H. & Ribaut, J. M. (2010). More genomic resources forless-studiedcrops.Trendsin Biotechnology 28(9):452-460.

Xian-Liang, S., Xue-Zhen, S. & Tian-Zhen, Z. (2006). Segregation distortion and its effect on genetic mapping in plants. Chinese Journal of Agricultural Biotechnology, 3(03):163-169.

Yusuf, A. A., Ayedun, H., & Sanni, L. O. (2008). Chemical composition and functional properties of raw and roasted Nigerian benniseed (Sesamum indicum) and bambara groundnut (Vignasubterranean).Food Chemistry, 111(2), 277-282.

Downloads

Published

2024-09-05

How to Cite

UNLOCKING THE GENETIC POTENTIAL OF BAMBARA GROUNDNUT (VIGNA SUBTERRANEA L.) TO INCREASE LEGUME CROP PRODUCTION IN NIGERIA: Akwapoly Journal of Communication and Scientific Research (APJOCASR). (2024). Akwapoly Journal of Communication & Scientific Research, 7(1), 43-57. https://doi.org/10.60787/apjcasr.vol7no1.17