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Abstract

In recent years, artificial intelligence (Al) has transformed scientific
inquiry and technological innovation significantly in almost all facets of
life.. This paper presents a study of Physics-Informed Neural Networks
(PINNs) solution techniques applied to Partial Differential Equation
(PDE) models in population dynamics. Specifically, the paper focuses on
modelling disease spread using an advection—diffusion—reaction partial
differential equations (PDEs), with the solution sought through Physics-
Informed Neural Networks (PINNs) technique. The community is being
modelled as a bounded spatial domain where the disease density evolves
over time and space. By embedding the underlying physical and biological
laws into the network architecture, PINNs offer a robust and accurate
framework to simulate infectious disease dynamics. Furthermore,
numerical simulations, were implemented using the MATLAB ODE45
scheme, which provided insights into the interplay between disease
progression, recovery , birth and death rate as parameter of interest in the
transmission dynamics.

Keywords: PDE Modelling, Population dynamics, Physics informed
neural network, machine learning, Biological laws, Disease spread.

1.0 Introduction

Population dynamics refer to study of the variation in the size and density of
population over time and space reflecting the net effect in differences among
individuals in their physiological and behavioural interactions with the
environment. It represents the changes in the number a species in a single location.
Population models have been germane and the time dependent interactions between
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modelling species have been of great interest to ecologists over the years.
Beginning from the well-known Lokta-Volterra predator prey equations derived in
the 1920s, mathematical modellers have utilised these equations to describe even
much more complex systems in more biological setting such as competition,
symbiosis, disease model ( SIR -Susceptible Infected -Recovered typed model )
powered mostly by ordinary differential equations and a host of others. However,
as noted by Kistou,(2022) this set of ordinary differential equations fails to capture
the spatial effect and thus the inclusion of diffusion terms and spatial dependence
by Conway and Smoller in 1977, birthed the use of PDE partial differential
equations (PDEs) in modeling dynamics.

Partial differential equations (PDEs) are pivotal to the modelling of natural
phenomena and find applications in almost every field of science and engineering
driving the means to tackling vast and ever-expanding array of real-world
problems—from the simple heat equation to more complex systems describing
financial markets, weather forecasting, or population dynamics. In the context of
disease spread, PDEs serve as a powerful techniques to capture the dynamics of
infectious agents over space and time. The desire to understand the solutions to
these equations has over the years pre- occupied mathematicians, scientist as these
solutions offer both insights into the underlying phenomena and valuable predictive
capabilities.

Traditional numerical techniques for approximating PDEs, such as finite difference
and finite element methods, have been thoroughly developed and refined over the
years. These methods typically involve discretizing the spatial domain using a
mesh, which transforms the PDE into a system of ordinary differential equations
(ODEs) that can be time-stepped to approximate the original problem. Though
highly robust and reliable, these grid-based methods require copiously fine
discretizations to enhance accuracy. For stability considerations, finer spatial
discretizations requires smaller time steps, resulting in a more computationally
expensive schemes.

Neural network describes a mathematical convenient and simplified version of
neurons in a brain encapsulating elements called 'perceptrons' . Neural network is
made up of a large network of these perceptrons just as the brain is a big network
of neurons.

In recent years, advances in artificial intelligence (Al) have opened new vistas for
solving PDEs. Solving partial differential equations (PDEs) governing physical
phenomena using machine learning (ML) has emerged as a new field of scientific
machine learning leveraging the universal approximation theorem and high

Akwapoly Journal of Communication and Scientific Research (APJOCASR), Vol. 9, No. 1, June., (2025). 42-53 43


https://akwapolyjournal.org/

APJOCASR-Open access journal licenced under Creative Commons (CC By 4.0) PDE MODELING OF POPULATION DYNAMICS
https://akwapolyjournal.org USING PHYSICS INFORMED NEURAL
NETWORKS (PINNS)

https/apjcasr.vol9no1.57
Anthony Udo Akpan

expressivity of neural networks. Physics-Informed Neural Networks (PINNs)
represent a groundbreaking technique that roots the physical laws—expressed as
PDEs—directly into the neural network's training process. Rather than relying
wholly on discretization, PINNs enforce the consistency with observed data and
the underlying PDE constraints simultaneously by incorporating both into a
composite loss function. For modeling disease spread, this methodology is
particularly attractive, since it enables the integration of sparse or noisy
observational data with the rigorous mathematical structure provided by an
advection—diffusion—reaction PDE.

The recent forays of scientists and modellers into physics informed neural network
(PINN) otherwise known as theory trained neural network (TTNN) to provide
solutions to PDE systems is well documented. For example, Raissi et al., (2019)
introduced a novel framework that leverages machine learning (ML) integrated
with physics-based constraints both to solve and understand partial differential
equations (PDEs) from data. Their approach comprises two complementary
strategies: a continuous time model that embeds PDE residuals into the loss
function to create data-efficient spatio-temporal approximators, and a discrete time
model that employs implicit Runge—Kutta schemes for highly accurate temporal
integration. This dual technique has been effectively utilised across diverse
spectrums—including fluid dynamics, quantum mechanics, reaction—diffusion
systems, and nonlinear shallow-water wave propagation—demonstrating its
capacity to not only simulate complex systems with limited data but also uncover
underlying physical laws ( Wu et al.,2024).

For Rodrigues, (2024), the main idea behind PINNs is to train neural networks to
learn not only from observed data but also adhere to the underlying physics that
govern the system. This is achieved by incorporating differential equations or other
relevant physical constraints as additional terms in the loss function during training.
This unique combination allows PINNs to generalize well beyond the available
data and offers a data-driven framework for solving complex physical problems.

Lin and Chen (2023) proposed a twin novel physics-informed neural network
(PINN) schemes that integrate Miura transformation constraints into the learning
process to solve nonlinear partial differential equations (PDEs) using an
unsupervised approach. Their method leverages the Miura transformation as a
critical bridge, allowing initial-boundary data from one nonlinear equation to drive
the data-driven solution of another. Through extensive computational experiments
on the KdV and mKdV equations, the authors not only reproduced the dynamic
behaviour of the solutions but also discovered a new localized wave—namely, a
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kink-bell type solution for the defocusing mKdV equation. Their comparative
analysis of the two schemes underscores that each has its own merits, suggesting
that the choice of method should be tailored to the specific problem at hand. The
utilization of PINNs by several authors (Rodrigues, (2024); Lin, S., & Chen, Y.
(2024); Wu et al.,. (2024) ) to study different phenomena directed by PDE systems
underscore the growing influence of Artificial Intelligence (Al) enabled solutions
in everyday life.

In this study, anovel PDE modeling technique of population dynamics specifically
disease transmission dynamics using the Physics informed neural networks
(PINNs)  solution techniques is formulated and analysed qualitatively and
quantitatively. The study is further structured for ease of presentation as follows:
Section one deals with the introduction  while section two entertains the
mathematical formulations and assumptions. Section three is engulfed in the
analysis involving both qualitative and quantitative approach. Section four is
concerned with the simulations and discussions of the results. The paper concludes
in section five with further research direction.

2.0 Mathematical Formulations and Assumptions

Disease spread in a typical population amongst species is characterized by a
complex interactions such as spatial movement representing the advection terms ,
random movement (diffusion) and local interactions (reactions) such that the
governing equation is directed by a PDE. In this study we present an advection-
reaction diffusion model that describe the spread of a disease in a local population
given thus:

24+ V.(vw) = DVu + R(u,x,t) @.1),

Where u(x,t) is the disease density at location x and time t.

v i1s the advection velocity field representing the human movement

D is the diffusion coefficient and R(u, x, t) is the reaction terms modeling the local
infection dynamics such as infectivity, recovery and death with R(u,x,t) =
pu(l —u) —uy and

follows a logistic format, f being the infection transmission rate and y is the
infection recovery rate. A feed forward neural network was designed to
approximate the solution of system (2.1).The network architecture included an
input layer, multiple hidden layers, and an output layer corresponding to the
predicted population size. The loss function is modeled below:

L(‘P) = Lgata + ALppE (2.2)
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1 . .
Where L;4tq0 = N—dZIile |U(x;; t;;0) —u;|?>  is the measure of error with respect

to the observed disease data and A is the regularization parameter.

1 N, 0U .
Lopg = 3-Z00 150 +V. (vu(x;; ;3 0)) — DVUG;; £150) — R(UCxj; 43 0), %, £)[F s
the measure of the PDE solutions ensuring that the governing equation is enforced
in this instance by penalizing any violation of the underlying physical laws at the

point of selection in the domain of consideration.

3.0 PINN Architecture

We outline the algorithm for the implementation of PINN in this sections. This is
achieved as follow:

1. Define the PDE parameters by setting values for Advection, diffusion
coefficient, infection transmission rate and recovery rate respectively v, D, f and y
2. The normalized domain is 2 :== x € [0 1] and t € [0 1] for the spatial location
and time respectively is defined

3. The Nyt point along the spatial domain att = 0 is generated using the
Guassian profile centered at x = 0.5 to simulate the initial outbreak: u(x,0) =
exp (—100(x — 0.5)?

4. The N_y110c random points x(x,t) is generated such that the enforced neural
network output satisfies the governing PDE throughout the domain.

5. The neural network setup is implemented manually using the feed-forward
neural network with two input layers corresponding the x and t and two hidden
layers with 20 neutrons using the hyperbolic tangent (tanh) activation function and
a single neuron outputs that predicted the disease density u(x, t).

6) All network parameters (weights and biases) are initialized using small random
values and stored in a single vector 6 .

7) The loss function is defined by computing the mean square error (MSE) between
the predicted neural network and the initial observed data( observed error) such
that :

1 Ndata
LosSqata = N Z uyn (x5 0;0) — udata(xi))z
data 4
=1

8) Define the PDE loss (residual error) by approximating the derivatives of u(x, t)

using central finite differences such that
u(x,t+e)—u(x,t—e)

the time derivative u; = and the spatial derivative

2e
Uy = u(x+6’t)2_eu(x_e't) and the second spatial derivative Uy, =
u(x+e’t)_Zug’t)ﬂ(x_e’t) . Forming the PDE residual function f = u, + vu, —
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Duy, — fu(l —u) —yu and computing the PDE loss as the MSE of this
residual such that
Neolloc
1 2
LosSppp = N z f(x, t;)
colloc =1

9) The combined data and PDE loss function is calculated :

LosStotar = LOSSppg + LOSSgata

10) Define the objective function that returned the total loss function given by the
parameter 8 and thereafter utilised the trained network to predict u(x, t) over the
grid covering the entire domain u(x, t).

Based on the above algorithm we generate using MATLAB as shown in the table
below:

Table 2.1

Iteration Func-count f(x) Step-size optimality
0 502 0.186273 0.781
1 1506 0.13376  0.321166 0.307
2 2008 0.109949 1 0.123
3 2510 0.104914 1 0.0568
4 3012 0.103023 1 0.0249
5 3514 0.096667 1 0.0776
6 4016 0.094622 1 0.0426
7 4518 0.0939039 1 0.00619
8 5020 0.093862 1 0.00111
9 5522 0.0938617 1 0.00131
10 6024 0.0938607 1 0.00153
11 7028 0.0938599 0.377604 0.00179
12 8032 0.0938595 0.282073 0.00144
13 13554 0.0938591 0.346832 0.00154
14 14056 0.0938567 1 0.00131
15 14558 0.0938553 1 0.00125
16 15060 0.0938551 1 0.00139
17 15562 0.0938519 1 0.00132
18 16064 0.0938492 1 0.00214
19 16566 0.0938439 1 0.00385
20 17068 0.0938292 1 0.00405

4.0 Numerical Simulations
As noted by Chin & Mckay ,(2019) model verification and validation can provide
evidence that a given model is accurate and hence we carry out simulation of the
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model system (2.1) with the data to represent and understand the research problem
and based on the dearth of mathematical modeling on the subject all values are
assumed for simulation purposes.

Predicted Disease Spread Using PN
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Figure 4.1: A 3D plot in a normalized spatial domain (2:x € [0 1] of disease
spread in a typical community where the simulations begins at t = Oand ¢t = 1
capturing how the disease propagates over time. u represent the prevalence of the
disease at each spatial location x and time t. The figure depicts a gradual increase
in the density of the disease from blue (low points) to red (high points) as the time
progresses. As could be seen from the figure, there are no sharp peaks or localized
hotspot evidently suggesting a uniform propagation over time and space rather than
a sudden outbreak. The sloped surface shows a steady increase in disease density
across space and time in the domain of interest suggesting that the governing
equations enforce a smooth continual spread in the local community. The absence
of sharp variations along the x — axis is indicative of a diffusion dominated
spread l-eading to a uniform distribution across the local community of interest.
The implication of the gradual spread of the disease is suggestive that diffusion is
the primary driver rather than advection. This might be akin to a scenario where
the recovery or removal terms are not enforced mirroring the early stages of an
epidemic where infections dominate over recovery.
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Figure 4.2: A 3D plot of disease spread u(x,t) over time t and location x in a
typical community over a spatiotemporal domain incorporating diffusion,
advection and recovery. The plot showcases the fact that at time ¢ = 0 the infection
begins as a localised peak in the middle of the region of the local community with
the initial peak representing high infection concentration at the specific spatial
location. Over time, the disease spread outward ,modelling the random movement
(diffusion) of infected individual while the rightward shift shows disease spread
in a preferred direction (advection) . The infectivity peaked at the red (high point)
and as individual recovery ensued leading to reduction in the infective density and
as this happen over time then fewer individuals remain infected. Thus as t — 1 the
infective individual reduces significantly showing the triple effects of diffusion,
advection and recovery, Though the infection is not completely eliminated but
diminished significantly an indicative tendency towards disease control could be
achieved in this instance. The result underpins that disease diffusion, transport and
recovery interact dynamically.
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Figure 4.3: The plot illustrate the propagation of disease in a typical community
where birth and death are taken into account.

4.0 Discussion of Results

The simulations above as depicted in the visualization seen in figures ( 4.1-4.3)
showcase a simple disease propagation under several modelling scenarios ranging
from basic disease transmission, recovery mechanism and birth-death dynamics
proving key insights that could be utilised for quick decision making process in a
public health setting. The initial plot mirrors a monotonically increasing surface
indicating that disease density increase over time and spatial location. The absence
of the recovery mechanism implies that once an infective individual remains
infected in a population leading to a gradual accumulation of the disease in the
typical human society could lead to the prevalence of the disease in such a situation.
Expectedly, in a purely diffusion based model, where infections propagate freely
without any recovery. The disease continues to spread unabated until the disease
saturates the entire population- a reflection of unchecked epidemic.

On the other hand the second plot (figure 4.2) reflect a non-monotonic trend where
initially the disease increases , peaked and finally decline over time, analogous to
the fact that the infected individual recover over time , resulting the decline in

Akwapoly Journal of Communication and Scientific Research (APJOCASR), Vol. 9, No. 1, June., (2025). 42-53 5 O


https://akwapolyjournal.org/

APJOCASR-Open access journal licenced under Creative Commons (CC By 4.0) PDE MODELING OF POPULATION DYNAMICS
https://akwapolyjournal.org USING PHYSICS INFORMED NEURAL
NETWORKS (PINNS)

https/apjcasr.vol9no1.57
Anthony Udo Akpan

disease prevalence over the spatial domain. The inclusion of the recovery
mechanism significantly changes disease progression. The maximum burden of the
disease is represented at the peak and thereafter recovered individual lowered the
disease density, akin to a typical real-world epidemic scenario where disease
outbreaks have peaked phase followed by declining phase possibly due to
immunity or interventions.

Finally, the third plot represents a complex scenario owing to the introduction of
birth-death into the dynamics. In this instance new susceptible individual are
introduced by birth whereas infected individual could die reducing disease density.
Thus the disease does not necessarily vanishes out of the population but reaches a
steady states depending on the birth, infection, recovery and death rate. The
implication of this situation is that if the birth rate exceeds the death rate then the
new susceptible will enter the population enabling the disease to persist
indefinitely in the population. In the same vein, if the recovery and death interplay
is high enough, then the possibility of the disease to die out in the population is
guaranteed. The model underscores a real world infectious disease system where
the population is dynamic rather than being static.

5. Conclusion and Further Research

In this study, we demonstrated the successful application of Physics-Informed
Neural Networks (PINNs) to model disease spread through an advection—
diffusion—reaction PDE. Our approach effectively integrates sparse observational
data with the underlying physical laws governing disease dynamics, overcoming
several limitations of traditional numerical methods. By embedding the PDE
constraints directly into the training process, PINNs provide a robust and
computationally efficient means of forecasting epidemic evolution. To illustrate
the potential of our methodology, we simulated several scenarios of disease spread
in a typical local community. Numerical simulations, were implemented using the
MATLAB ODE45 scheme, which provided insights into the relationship disease
propagation, recovery , birth and death rate as parameter of interest in the
transmission dynamics. The community is modeled as a bounded spatial domain
where the disease density evolves. An outbreak is assumed to start from a localized
region, figures (4.1-4.3) representing an initial cluster of infection within the
community. The velocity field is configured to reflect common commuting patterns
and daily movements, which are significant in shaping the directional spread of the
disease. Diffusion models the random movement of individuals across the
community, accounting for local interactions that are not captured by directed
movement. The reaction term modeled to follow a logistic growth framework
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captures the intrinsic biological dynamics of disease transmission. The application
of the PINNs underpins the utility of the method in solving PDE system:s.

Further research avenues could explore the application of artificial intelligence for
policy analysis and forecasting. This could involve utilizing Al techniques to model
and predict the impact of various policy interventions, including strategies to
mitigate disease outbreaks. By incorporating Al-driven approaches, policymakers
may gain additional insights to optimize decision-making processes and enhance
the effectiveness of development initiatives.
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