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Abstract 

In recent years, artificial intelligence (AI) has transformed scientific 

inquiry and technological innovation significantly in almost all facets of 

life.. This paper presents a study of Physics-Informed Neural Networks 

(PINNs) solution techniques applied to Partial Differential Equation 

(PDE) models in population dynamics. Specifically, the  paper focuses on 

modelling disease spread using an advection–diffusion–reaction partial 

differential equations (PDEs), with the solution sought  through Physics-

Informed Neural Networks (PINNs) technique. The community is  being 

modelled as a bounded spatial domain where the disease density evolves 

over time and space. By embedding the underlying physical and biological 

laws into the network architecture, PINNs offer a robust and accurate 

framework to simulate infectious disease dynamics. Furthermore, 

numerical simulations, were implemented using the MATLAB ODE45 

scheme,  which provided insights into the interplay between disease 

progression, recovery , birth and death rate as parameter of interest in the 

transmission dynamics. 
 

Keywords:  PDE Modelling, Population dynamics, Physics informed 

neural network, machine learning, Biological laws, Disease spread. 
 

1.0 Introduction 

Population dynamics refer to study of the variation in the size and density of 

population over time and space reflecting the net effect in differences among 

individuals in their physiological and behavioural interactions with the 

environment. It represents the changes in the  number a  species in a single location. 

Population models have been germane and the time dependent interactions between 

https://akwapolyjournal.org/
mailto:tonny.akpan@gmail.com


APJOCASR-Open access journal licenced under Creative Commons (CC By 4.0)          PDE MODELING OF POPULATION DYNAMICS 

https://akwapolyjournal.org                                                                                                            USING PHYSICS INFORMED NEURAL 

NETWORKS (PINNS) 

https/apjcasr.vol9no1.57   
 Anthony Udo Akpan 

                                                                                            

 

 Akwapoly Journal of Communication and Scientific Research (APJOCASR), Vol. 9, No. 1, June., (2025). 42-53        43 

modelling species have been of great interest to ecologists over the years. 

Beginning from the well-known Lokta-Volterra predator prey equations derived in 

the 1920s, mathematical modellers have  utilised these equations to describe even  

much more complex  systems in more biological setting such as competition, 

symbiosis, disease model ( SIR -Susceptible Infected -Recovered  typed model ) 

powered mostly by ordinary differential equations and a host of others.  However, 

as noted by Kistou,(2022) this set of ordinary differential equations fails to capture 

the spatial effect  and thus the inclusion of diffusion terms and   spatial dependence 

by Conway and Smoller in 1977,  birthed the use of PDE partial differential 

equations (PDEs) in modeling dynamics.  
 

Partial differential equations (PDEs) are pivotal to the modelling of natural 

phenomena and find applications in almost every field of science and engineering 

driving  the means to tackling  vast and ever-expanding array of real-world 

problems—from the simple heat equation to  more complex systems describing 

financial markets, weather forecasting, or population dynamics. In the context of 

disease spread, PDEs serve as a powerful techniques to capture the dynamics of 

infectious agents over space and time. The desire to understand the solutions to 

these equations has over the years pre- occupied mathematicians, scientist as these 

solutions offer both insights into the underlying phenomena and valuable predictive 

capabilities. 
 

Traditional numerical techniques for approximating PDEs, such as finite difference 

and finite element methods, have been thoroughly developed and refined over the 

years. These methods typically involve discretizing the spatial domain using a 

mesh, which transforms the PDE into a system of ordinary differential equations 

(ODEs) that can be time-stepped to approximate the original problem. Though 

highly robust and reliable, these grid-based methods require copiously fine 

discretizations to enhance accuracy. For stability considerations, finer spatial 

discretizations requires smaller time steps, resulting in a more  computationally 

expensive schemes. 
 

Neural network describes a mathematical convenient and simplified version of 

neurons in a brain encapsulating elements called 'perceptrons' . Neural network is 

made up of a large network of these perceptrons just as the brain is a big network 

of neurons. 
 

In recent years, advances in artificial intelligence (AI) have opened new vistas for 

solving PDEs. Solving partial differential equations (PDEs)  governing physical 

phenomena using machine learning (ML)  has emerged as a new field of scientific 

machine learning  leveraging the universal approximation theorem and high 
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expressivity of neural networks. Physics-Informed Neural Networks (PINNs) 

represent a groundbreaking technique that roots the physical laws—expressed as 

PDEs—directly into the neural network's training process. Rather than relying 

wholly on discretization, PINNs  enforce the consistency with observed data and 

the underlying PDE constraints simultaneously by incorporating both into a 

composite loss function. For modeling disease spread, this methodology is 

particularly attractive, since it enables the integration of sparse or noisy 

observational data with the rigorous mathematical structure provided by an 

advection–diffusion–reaction PDE.  
 

The recent forays of scientists and modellers into physics informed neural network 

(PINN) otherwise known as theory trained neural network (TTNN) to provide 

solutions to PDE systems  is well documented. For example, Raissi et al., (2019) 

introduced a novel framework that leverages machine learning (ML) integrated 

with physics-based constraints both to solve and understand partial differential 

equations (PDEs) from data. Their approach comprises two complementary 

strategies: a continuous time model that embeds PDE residuals into the loss 

function to create data-efficient spatio-temporal approximators, and a discrete time 

model that employs implicit Runge–Kutta schemes for highly accurate temporal 

integration. This dual technique has been effectively utilised across diverse 

spectrums—including fluid dynamics, quantum mechanics, reaction–diffusion 

systems, and nonlinear shallow-water wave propagation—demonstrating its 

capacity to not only simulate complex systems with limited data but also uncover 

underlying physical laws ( Wu et al.,2024).  
 

For Rodrigues, (2024), the main idea behind PINNs  is to train neural networks to  

learn not only from observed data but also adhere to the underlying physics that 

govern the system. This is achieved by incorporating differential equations or other 

relevant physical constraints as additional terms in the loss function during training. 

This unique combination allows PINNs to generalize well beyond the available 

data and offers a data-driven framework for solving complex physical problems. 
 

Lin and Chen (2023) proposed a twin novel physics-informed neural network 

(PINN) schemes that integrate Miura transformation constraints into the learning 

process to solve nonlinear partial differential equations (PDEs) using an 

unsupervised approach. Their method leverages the Miura transformation as a 

critical bridge, allowing initial–boundary data from one nonlinear equation to drive 

the data-driven solution of another. Through extensive computational experiments 

on the KdV and mKdV equations, the authors not only reproduced the dynamic 

behaviour of the solutions but also discovered a new localized wave—namely, a 
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kink-bell type solution for the defocusing mKdV equation. Their comparative 

analysis of the two schemes underscores that each has its own merits, suggesting 

that the choice of method should be tailored to the specific problem at hand. The 

utilization of PINNs  by several authors (Rodrigues,  (2024); Lin, S., & Chen, Y. 

(2024); Wu et al.,. (2024) ) to study different  phenomena directed by PDE systems 

underscore the  growing influence of Artificial Intelligence (AI) enabled solutions 

in everyday life. 
 

In this study, a novel  PDE modeling technique of population dynamics specifically 

disease transmission dynamics using the  Physics informed neural networks 

(PINNs)   solution techniques is formulated and analysed qualitatively and 

quantitatively. The study is further structured for ease of presentation as follows: 

Section one deals with the introduction   while section two entertains the 

mathematical formulations and assumptions. Section three is engulfed in the 

analysis involving both qualitative and quantitative approach. Section four is 

concerned with the simulations and discussions of the results. The paper concludes 

in section five with further research direction. 
 

2.0   Mathematical Formulations and Assumptions 

Disease spread in a typical population amongst species  is characterized by a 

complex interactions such as  spatial movement representing the advection terms , 

random movement (diffusion) and local interactions (reactions) such that the 

governing equation is directed by a PDE. In this study we present an advection-

reaction diffusion model that describe the spread of a disease in a local population 

given thus: 
𝜕𝑢

𝜕𝑡
+ ∇. (𝑣𝑢) = 𝐷∇𝑢 + 𝑅(𝑢, 𝑥, 𝑡)     (2.1), 

Where 𝑢(𝑥, 𝑡)   is the disease density at location 𝑥  and time 𝑡. 
𝑣  is the advection velocity field  representing the human movement  

𝐷 is the diffusion coefficient and  𝑅(𝑢, 𝑥, 𝑡) is the reaction terms modeling the local 

infection dynamics such as infectivity, recovery and death with 𝑅(𝑢, 𝑥, 𝑡) =
𝛽𝑢(1 − 𝑢) − 𝑢𝛾  and  

follows a logistic format, 𝛽 being the  infection transmission rate and 𝛾 is the 

infection recovery rate. A feed forward neural network was designed to 

approximate the solution of system  (2.1).The network architecture included an 

input layer, multiple hidden layers, and an output layer corresponding to the 

predicted population size. The loss function is modeled below: 
  

 ℒ(𝜑) = ℒ𝑑𝑎𝑡𝑎 + 𝜆ℒ𝑃𝐷𝐸       (2.2) 
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Where ℒ𝑑𝑎𝑡𝑎 =
1

𝑁𝑑
∑ |𝒰(𝑥𝑖; 𝑡𝑖; 𝜃) − 𝑢𝑖|2𝑁𝑑

𝑖=1     is the measure of error with respect 

to the observed disease data  and    𝜆 is the regularization parameter. 

ℒ𝑃𝐷𝐸 =
1

𝑁𝑟
∑ |

𝜕𝒰

𝜕𝑡
+ ∇. (𝑣𝒰(𝑥𝑗; 𝑡𝑗; 𝜃)) − 𝐷∇𝒰(𝑥𝑗; 𝑡𝑗; 𝜃) − 𝑅(𝒰(𝑥𝑗; 𝑡𝑗; 𝜃), 𝑥, 𝑡)|2𝑁𝑟

𝑟=1     is 

the measure of the PDE solutions ensuring that the governing equation is enforced 

in this instance by penalizing any violation of the underlying  physical laws at the 

point of selection in the domain of consideration.  
 

3.0  PINN Architecture  

We outline the algorithm for the implementation of PINN in this sections. This is 

achieved as follow: 

1. Define the PDE parameters  by setting values for Advection, diffusion 

coefficient, infection transmission rate and recovery rate respectively 𝑣, 𝐷, 𝛽 and 𝛾  

2. The normalized domain is 𝛺 ≔ 𝑥 ∈ [0 1] and 𝑡 ∈ [0 1] for the spatial location 

and time respectively is defined 

3. The 𝑁𝑑𝑎𝑡𝑎 point along the spatial domain at 𝑡 = 0 is generated  using the 

Guassian profile centered at 𝑥 = 0.5 to simulate the initial outbreak: 𝑢(𝑥, 0) =
exp (−100(𝑥 − 0.5)2 

4. The 𝑁𝑐𝑜𝑙𝑙𝑜𝑐 random points 𝑥(𝑥, 𝑡)  is generated such that the enforced neural 

network output  satisfies the  governing PDE throughout the domain. 

5. The neural network setup is implemented manually using the feed-forward 

neural network with two input layers corresponding the 𝑥 and 𝑡 and  two hidden 

layers with 20 neutrons using the hyperbolic  tangent (tanh) activation function and 

a single neuron   outputs that predicted the disease density 𝑢(𝑥, 𝑡). 
 6) All network parameters  (weights and biases) are initialized using  small random 

values and stored in a  single vector 𝜃 . 

7)  The loss function is defined by computing the mean square error (MSE) between 

the predicted neural network  and the initial observed data( observed error) such 

that : 

ℒ𝑜𝑠𝑠𝑑𝑎𝑡𝑎 =
1

𝑁𝑑𝑎𝑡𝑎
∑ 𝑢𝑁𝑁(𝑥𝑖; 0; 𝜃) − 𝑢𝑑𝑎𝑡𝑎(𝑥𝑖))2

𝑁𝑑𝑎𝑡𝑎

𝑖=1

 

8) Define the PDE loss (residual error) by approximating the derivatives of 𝑢(𝑥, 𝑡)  

using central finite differences such that  

 the time derivative 𝑢𝑡 =
𝑢(𝑥,𝑡+𝜖)−𝑢(𝑥,𝑡−𝜖)

2𝑒
  and the spatial derivative  

 𝑢𝑥 =
𝑢(𝑥+𝜖,𝑡)−𝑢(𝑥−𝜖,𝑡)

2𝑒
 and the second spatial derivative 𝑢𝑥𝑥 =

𝑢(𝑥+𝜖,𝑡)−2𝑢(𝑥,𝑡)+𝑢(𝑥−𝜖,𝑡)

𝜖2  . Forming the PDE residual function 𝑓 = 𝑢𝑡 + 𝑣𝑢𝑥 −
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𝐷𝑢𝑥𝑥 − 𝛽𝑢(1 − 𝑢) − 𝛾𝑢       and computing the PDE loss as the MSE of this 

residual such that  

ℒ𝑜𝑠𝑠𝑃𝐷𝐸 =
1

𝑁𝑐𝑜𝑙𝑙𝑜𝑐
∑ 𝑓(𝑥𝑗, 𝑡𝑗)2

𝑁𝑐𝑜𝑙𝑙𝑜𝑐

𝑖=1

 

9) The combined data and PDE loss function is calculated  :  

ℒ𝑜𝑠𝑠𝑡𝑜𝑡𝑎𝑙 = ℒ𝑜𝑠𝑠𝑃𝐷𝐸 + ℒ𝑜𝑠𝑠𝑑𝑎𝑡𝑎   

10) Define the objective function that returned the total loss function given by the 

parameter 𝜃  and thereafter utilised  the trained network to predict 𝑢(𝑥, 𝑡) over the 

grid covering the entire domain 𝑢(𝑥, 𝑡). 

Based on the above algorithm  we generate   using MATLAB as  shown in the table 

below: 

Table 2.1   

Iteration  Func-count       f(x)        Step-size       optimality 

     0         502         0.186273                           0.781 

     1        1506          0.13376       0.321166           0.307   

     2        2008         0.109949              1           0.123   

     3        2510         0.104914              1           0.0568   

     4        3012         0.103023              1           0.0249   

     5        3514         0.096667              1          0.0776   

     6        4016         0.094622              1          0.0426   

     7        4518        0.0939039              1         0.00619   

     8        5020         0.093862              1         0.00111   

     9        5522        0.0938617              1         0.00131   

    10        6024        0.0938607              1         0.00153   

    11        7028        0.0938599       0.377604         0.00179   

    12        8032        0.0938595       0.282073         0.00144   

    13       13554        0.0938591       0.346832         0.00154   

    14       14056        0.0938567              1         0.00131   

    15       14558        0.0938553              1        0.00125   

    16       15060        0.0938551              1         0.00139   

    17       15562        0.0938519              1         0.00132   

    18       16064        0.0938492              1         0.00214   

    19       16566        0.0938439              1         0.00385   

    20       17068        0.0938292              1         0.00405   
 

4.0 Numerical  Simulations 

As noted by Chin & Mckay ,(2019) model verification and validation  can provide 

evidence that a given model is accurate and hence we carry out simulation of the 
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model system (2.1) with the data  to represent and understand the research problem 

and based on the dearth of mathematical modeling on the subject all  values are 

assumed for simulation purposes.   

 
Figure 4.1:  A 3D plot in a  normalized spatial domain   𝛺: 𝑥 ∈ [0 1]   of disease 

spread in a typical community where the simulations begins at 𝑡 = 0 and 𝑡 = 1 

capturing how the disease propagates over time. 𝑢 represent  the prevalence of the 

disease at each spatial location 𝑥 and time 𝑡. The figure depicts a gradual increase 

in the density of the disease from blue (low points) to red (high points) as the time 

progresses. As could be seen from the figure, there are no sharp peaks or localized 

hotspot evidently suggesting a uniform propagation over time and space rather than 

a sudden outbreak. The  sloped surface shows a steady increase in disease density 

across space and time in the domain of interest suggesting that the governing 

equations enforce a smooth  continual spread in the local community. The absence 

of  sharp variations along the 𝑥 − axis    is indicative of a diffusion dominated 

spread l-eading to a uniform distribution across the local community of interest. 

The implication of the gradual spread of the disease is suggestive that diffusion is 

the primary driver rather than advection. This might be akin to a scenario where 

the  recovery or removal terms are not enforced mirroring the early stages of an 

epidemic where infections dominate over recovery. 
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Figure 4.2: A 3D plot of  disease spread 𝑢(𝑥, 𝑡) over time 𝑡 and location 𝑥 in a 

typical community over a spatiotemporal domain incorporating diffusion, 

advection and recovery. The plot showcases the fact that at time 𝑡 = 0  the infection 

begins as a localised peak in the middle of the region of the local community with 

the initial peak representing high infection concentration at the specific  spatial 

location. Over time, the disease spread  outward ,modelling the  random movement  

(diffusion)  of infected individual while the rightward shift shows disease spread 

in a preferred direction (advection) . The infectivity peaked  at the red (high point) 

and as individual recovery ensued leading to reduction in the infective density and 

as this happen over time then fewer individuals remain infected. Thus as 𝑡 ↦ 1 the 

infective individual reduces significantly showing the triple effects of diffusion, 

advection and recovery, Though the infection is not completely eliminated but 

diminished significantly an indicative tendency towards disease control could be 

achieved in this instance. The result underpins that disease diffusion, transport and 

recovery interact  dynamically. 
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Figure 4.3: The plot illustrate the propagation of disease in a typical community 

where birth and death are taken into account.   
 

4.0  Discussion of Results 

The simulations above  as depicted in the visualization seen in  figures ( 4.1-4.3) 

showcase a simple disease propagation under several modelling scenarios ranging 

from basic disease transmission, recovery mechanism and birth-death dynamics 

proving  key insights that could be utilised for quick decision making process in a 

public health setting. The initial plot  mirrors a monotonically increasing surface 

indicating that disease density increase over time and spatial location. The absence 

of the recovery mechanism implies that once an infective individual remains 

infected  in a population leading to a gradual accumulation of the disease in the 

typical human society could lead to the prevalence of the disease in such a situation. 

Expectedly, in a purely diffusion based model, where infections propagate freely 

without any recovery. The disease continues to spread unabated  until the disease 

saturates the entire  population-  a reflection of unchecked epidemic.  
 

On the other hand the second plot (figure 4.2) reflect a non-monotonic trend where 

initially the disease increases , peaked and finally decline over time, analogous to 

the fact that the infected individual recover over time , resulting the decline in 
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disease prevalence over the spatial domain. The inclusion of the recovery  

mechanism significantly changes disease progression. The maximum burden of the 

disease is represented at the peak and  thereafter  recovered individual lowered the 

disease density, akin to a typical real-world epidemic scenario where disease 

outbreaks have peaked phase followed by declining phase possibly due to 

immunity or interventions. 
 

Finally,  the third plot represents a complex scenario owing to the introduction of 

birth-death into the dynamics. In this instance new susceptible individual are 

introduced by  birth whereas infected individual could die reducing disease density. 

Thus the disease does not necessarily vanishes out of the population but reaches a 

steady states depending on the birth, infection, recovery and death rate. The 

implication of this situation is that if the birth rate exceeds the death rate then the 

new susceptible will enter the population enabling the  disease to persist 

indefinitely in the population. In the same vein, if the recovery and death interplay 

is high enough, then the possibility of the disease to die out in the population is 

guaranteed. The model underscores a real world  infectious disease system where 

the  population is dynamic rather than being static. 
 

5. Conclusion and Further Research      

In this study, we demonstrated the successful application of Physics-Informed 

Neural Networks (PINNs) to model disease spread through an advection–

diffusion–reaction PDE. Our approach effectively integrates sparse observational 

data with the underlying physical laws governing disease dynamics, overcoming 

several limitations of traditional numerical methods. By embedding the PDE 

constraints directly into the training process, PINNs provide a robust and 

computationally efficient means of forecasting epidemic evolution. To illustrate 

the potential of our methodology, we simulated several scenarios of disease spread 

in a typical local community. Numerical simulations, were implemented using the 

MATLAB ODE45 scheme,  which provided insights into the relationship disease 

propagation, recovery , birth and death rate as parameter of interest in the 

transmission dynamics. The community is modeled as a bounded spatial domain 

where the disease density evolves. An outbreak is assumed to start from a localized 

region, figures (4.1-4.3) representing an initial cluster of infection within the 

community. The velocity field is configured to reflect common commuting patterns 

and daily movements, which are significant in shaping the directional spread of the 

disease. Diffusion models the random movement of individuals across the 

community, accounting for local interactions that are not captured by directed 

movement. The reaction term  modeled to follow a logistic growth framework 
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captures the intrinsic biological dynamics of disease transmission. The application 

of the PINNs underpins the utility of the method in solving PDE systems.  

Further research avenues could explore the application of artificial intelligence for 

policy analysis and forecasting. This could involve utilizing AI techniques to model 

and predict the impact of various policy interventions, including strategies to 

mitigate disease outbreaks. By incorporating AI-driven approaches, policymakers 

may gain additional insights to optimize decision-making processes and enhance 

the effectiveness of development initiatives. 
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